Design of MHC I stabilizing peptides by agent-based exploration of sequence space.
نویسندگان
چکیده
Identification of molecular features that determine peptide interaction with major histocompatibility complex I (MHC I) is essential for vaccine development. We have developed a concept for peptide design by combining an agent-based artificial ant system with artificial neural networks. A jury of feedforward networks classifies octapeptides that are recognized by mouse MHC I protein H-2K(b). Prediction accuracy yielded a correlation coefficient of 0.94. Peptides were designed in machina by the artificial ant system and tested in vitro for their MHC I stabilizing effect. The behavior of the search agents during the design process was controlled by the jury network. The experimentally determined prediction accuracy was 89% for the designed stabilizing and 95% for the non-stabilizing peptides. Novel H-2K(b) stabilizing peptides were conceived that reveal extensions of known residue motifs. The combined network-agent system recognized context dependencies of residue positions. A diverse set of novel sequences exhibiting substantial activity was generated.
منابع مشابه
MHC I Stabilizing Potential of Computer-Designed Octapeptides
Experimental results are presented for 180 in silico designed octapeptide sequences and their stabilizing effects on the major histocompatibility class I molecule H-2K(b). Peptide sequence design was accomplished by a combination of an ant colony optimization algorithm with artificial neural network classifiers. Experimental tests yielded nine H-2K(b) stabilizing and 171 nonstabilizing peptides...
متن کاملScrutinizing MHC-I Binding Peptides and Their Limits of Variation
Designed peptides that bind to major histocompatibility protein I (MHC-I) allomorphs bear the promise of representing epitopes that stimulate a desired immune response. A rigorous bioinformatical exploration of sequence patterns hidden in peptides that bind to the mouse MHC-I allomorph H-2K(b) is presented. We exemplify and validate these motif findings by systematically dissecting the epitope ...
متن کاملEmpirical evaluation of a dynamic experiment design method for prediction of MHC class I-binding peptides.
The ability to predict MHC-binding peptides remains limited despite ever expanding demands for specific immunotherapy against cancers, infectious diseases, and autoimmune disorders. Previous analyses revealed position-specific preference of amino acids but failed to detect sequence patterns. Efforts to use computational analysis to identify sequence patterns have been hampered by the insufficie...
متن کاملProcessing of exogenous antigens for presentation by class I MHC molecules involves post-Golgi peptide exchange influenced by peptide-MHC complex stability and acidic pH.
Vacuolar alternate class I MHC (MHC-I) Ag processing allows presentation of exogenous Ag by MHC-I molecules with binding of antigenic peptides to post-Golgi MHC-I molecules. We investigated the role of previously bound peptides and their dissociation in generating peptide-receptive MHC-I molecules. TAP1-knockout macrophages were incubated overnight with an initial exogenous peptide, producing a...
متن کاملپیشرفت های جدید در شناخت اسپوندیلوآرتروپاتی ها
In last few years, numerous observations and studies on pathogenesis of spondyloarthropathies have been published and an animal model which confirms the associations of new information is now available. Bacteria which are responsible for reactive arthritis all can remain in the cells for long time. Molecules of class I MHC are able to present the intracellular peptides to immune system. B27 mol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Protein engineering, design & selection : PEDS
دوره 20 3 شماره
صفحات -
تاریخ انتشار 2007